作者单位
摘要
南京大学电子科学与工程学院, 南京 210023
本文使用金属有机物化学气相沉积(MOCVD)法在不同切割角的c面蓝宝石衬底上外延氧化镓(β-Ga2O3)单晶薄膜, 揭示了衬底切割角对外延薄膜晶体质量的影响规律。研究表明, 当衬底切割角为6°时, β-Ga2O3外延膜具有较小的X射线摇摆曲线半峰全宽(1.10°)和最小的表面粗糙度(7.7 nm)。在此基础上, 采用光刻、显影、电子束蒸发及剥离工艺制备了金属-半导体-金属结构的日盲紫外光电探测器, 器件的光暗电流比为6.2×106, 248 nm处的峰值响应度为87.12 A/W, 比探测率为3.5×1015 Jones, 带外抑制比为2.36×104, 响应时间为226.2 μs。
超宽禁带半导体 氧化镓薄膜 金属有机物化学气相沉积 日盲紫外光电探测器 切割角 外延 ultra-wide bandgap semiconductor β-Ga2O3 film metal organic chemical vapor deposition solar-blind ultraviolet photodetector off-cut angle epitaxy 
人工晶体学报
2023, 52(6): 1007
Kui-Ying Nie 1,2†Song Luo 3†Fang-Fang Ren 1,4,*Xuanhu Chen 1[ ... ]Jiandong Ye 1,6,*
Author Affiliations
Abstract
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
2 College of Physics & Engineering Technology, Minzu Normal University of Xingyi, Xingyi 562400, China
3 Department of Physics, Xiamen University, Xiamen 361005, China
4 e-mail:
5 e-mail:
6 e-mail:
Pursuing nanometer-scale nonlinear converters based on second harmonic generation (SHG) is a stimulating strategy for bio-sensing, on-chip optical circuits, and quantum information processing, but the light-conversion efficiency is still poor in such ultra-small dimensional nanostructures. Herein, we demonstrate a highly enhanced broadband frequency converter through a hybrid plasmonic–dielectric coupler, a ZnTe/ZnO single core–shell nanowire (NW) integrated with silver (Ag) nanoparticles (NPs). The NW dimension has been optimized to allow the engineering of dielectric resonances at both fundamental wave and second harmonic frequencies. Meanwhile, the localized surface plasmon resonances are excited in the regime between the Ag NPs and ZnTe/ZnO dielectric NW, as evidenced by plasmon-enhanced Raman scattering and resonant absorption. These two contributors remarkably enhance local fields and consequently support the strong broadband SHG outputs in this hybrid nanostructure by releasing stringent phase-matching conditions. The proposed nanoscale nonlinear optical converter enables the manipulation of nonlinear light–matter interactions toward the development of on-chip nanophotonic systems.
Photonics Research
2022, 10(10): 2337
Author Affiliations
Abstract
1 Nanjing University, College of Engineering and Applied Sciences, Nanjing, China
2 Nanjing University, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
3 Nanjing University, School of Chemistry and Chemical Engineering, Nanjing, China
4 Nanjing University, School of Electronic Science and Engineering, Nanjing, China
The achievement of functional nanomodules for subcellular label-free measurement has long been pursued in order to fully understand cellular functions. Here, a compact label-free nanosensor based on a fiber taper and zinc oxide nanogratings is designed and applied for the early monitoring of apoptosis in individual living cells. Because of its nanoscale dimensions, mechanical flexibility, and minimal cytotoxicity to cells, the sensing module can be loaded in cells for long term in situ tracking with high sensitivity. A gradual increase in the nuclear refractive index during the apoptosis process is observed, revealing the increase in molecular density and the decrease in cell volume. The strategy used in our study not only contributes to the understanding of internal environmental variations during cellular apoptosis but also provides a new platform for nonfluorescent fiber devices for investigation of cellular events and understanding fundamental cell biochemical engineering.
fiber nanogratings label-free sensor apoptosis monitoring 
Advanced Photonics
2022, 4(1): 016001
作者单位
摘要
1 金陵科技学院电子信息工程学院,南京 211169
2 南京大学电子科学与工程学院,南京 210093
金刚石表面的电子特性很容易受到其表面覆盖物的影响,而目前表面稳定、性能优良的表面覆盖层依然处于研究与寻找中。本文研究的过渡金属Cu不仅在半导体微加工中被广泛使用,更由于过渡金属Cu与金刚石都具有优异的散热性能,因此Cu覆盖金刚石已经超出寻常电极使用的意义,其金属-半导体结构更具有表面修饰剪裁电子特性的功能。文中通过使用密度泛函模拟方法,研究了Cu的不同覆盖度(0.25 ML、0.5 ML和1 ML)下金刚石(001)表面的单原子吸附能、稳定构型以及稳定体系的能带结构特性。结果表明,各种覆盖度下的Cu原子在金刚石(001)表面具有较稳定的表面吸附构型,并且过渡金属Cu的覆盖使得金刚石(001)表面产生了约为-0.5~-0.3 eV的负电子亲和势,肖特基势垒高度约为-0.16~0.04 eV,这些理论结果与实验结果基本一致。因此过渡金属Cu作为表面覆盖层在金刚石基电子发射器方面具有重要的应用价值。
金刚石表面 覆盖度 负电子亲和势 电子结构 第一性原理计算 diamond surface coverage negative electron affinity electronic structure fist-principle calculation 
人工晶体学报
2021, 50(9): 1640
Author Affiliations
Abstract
Research Institute of Shenzhen and School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China
The 8 μm thick single-crystalline α-Ga2O3 epilayers have been heteroepitaxially grown on sapphire (0001) substrates via mist chemical vapor deposition technique. High resolution X-ray diffraction measurements show that the full-widths-at-half-maximum (FWHM) of rocking curves for the (0006) and (10-14) planes are 0.024° and 0.24°, and the corresponding densities of screw and edge dislocations are 2.24 × 106 and 1.63 × 109 cm-2, respectively, indicative of high single crystallinity. The out-of-plane and in-plane epitaxial relationships are [0001] α-Ga2O3//[0001] α-Al2O3 and [11-20] α-Ga2O3//[11-20] α-Al2O3, respectively. The lateral domain size is in micron scale and the indirect bandgap is determined as 5.03 eV by transmittance spectra. Raman measurement indicates that the lattice-mismatch induced compressive residual strain cannot be ruled out despite the large thickness of the α-Ga2O3 epilayer. The achieved high quality α-Ga2O3 may provide an alternative material platform for developing high performance power devices and solar-blind photodetectors.
Journal of Semiconductors
2019, 40(1): 012804
Author Affiliations
Abstract
School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China
Solar-blind photodetectors are of great interest to a wide range of industrial, civil, environmental, and biological applications. As one of the emerging ultrawide-bandgap semiconductors, gallium oxide (Ga2O3) exhibits unique advantages over other wide-bandgap semiconductors, especially in developing high-performance solar-blind photodetectors. This paper comprehensively reviews the latest progresses of solar-blind photodetectors based on Ga2O3 materials in various forms of bulk single crystal, epitaxial films, nanostructures, and their ternary alloys. The basic working principles of photodetectors and the fundamental properties and synthesis of Ga2O3, as well as device processing developments, have been briefly summarized. A special focus is to address the physical mechanism for commonly observed huge photoconductive gains. Benefitting from the rapid development in material epitaxy and device processes, Ga2O3-based solar-blind detectors represent to date one of the most prospective solutions for UV detection technology towards versatile applications.
Photonics Research
2019, 7(4): 04000381

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!